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Abstract. We propose a simple way to preprocess symmetries based on the construction 
of invariant functions over the configuration space of the neural network. 

1. Introduction 

Some years ago Hopfield [ l ]  proposed a very simple model for pattern recognition 
that despite its simplicity possesses one of the remarkable properties addressed by the 
human brain, its flexibility. This network is able to recognise patterns that are similar 
but not identical to the ones stored. This is accomplished by storing the memories as 
fixed points of a certain dynamics, for example in the Hopfield model it is a spin glass 
with a ‘Monte Carlo’ time evolution. If the input is close to one of these fixed points 
that act like attractors in phase space, the time evolution will eventually drive it there. 

Due to this fact, the introduction of the concept of a ‘distance’ seems unavoidable. 
We need it in order to measure the basins of attraction of the fixed points or, in simple 
words, to estimate the amount of error beyond which the network will not recognise 
a given input. It is believed that these basins of attraction are very complex and may 
even have a fractal structure. Nevertheless it is known that a convenient measure of 
the distance between two different states is given by the Hamming distance which 
counts the number of different entries in the two states to be compared. 

In our opinion, one of the serious drawbacks of this distance is the fact that it 
‘looks’ at the vectors entry by entry. If we take a vector and perform a transformation 
that keeps its structure, the Hamming distance will in general be very large. It is 
unlikely that a network, where such a notion of distance is a natural one, would 
recognise it. 

Hence, if we want a truly flexible network, one that recognises structures by 
identifying vectors that are related to each other by a ‘symmetry transformation’, we 
are driven to introduce a new concept of distance that will be invariant under such 
transformations. 

The aim of this paper is to study how symmetries can be introduced in the 
configuration space of the neural network, in such a way that patterns related by a 
symmetry transformation to a memory can be recognised as such. For this reason, we 
introduce a preprocessing mechanism which can be regarded as a new distance among 
equivalence classes under the symmetry group, and is implemented by the construction 
of a particular kind of invariant functions (which may not be the most efficient ones). 
For different approaches to this problem we refer the interested reader to [2]. 
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The plan of the paper is as follows: in Q 2 we recall certain basic features about 
neural networks and the Hopfield model in particular, and we introduce the concept 
of an invariant distance for a particular choice of symmetry group. We choose to start 
with the group of cyclic permutations (or shifts with periodic boundary conditions) 
because of its interest and simplicity, but afterwards we give a prescription to generalise 
this construction for any subgroup of the whole permutation group. Hence the methods 
developed here are not restricted to the case of shifted, or translated, patterns. 

In 9 3 we study how errors, which are introduced at random, propagate via the 
preprocessing algorithm. We use a random walk approximation that nicely fits the 
‘experimental data’ coming from several computer runs. We will see that errors are 
magnified, implying the reduction of the basins of attraction. This is the price we have 
to pay for greater flexibility and a larger number of recognised patterns. 

In 9 4  we analyse the more interesting question of the robustness of the system 
with respect to errors that are not random, but involve the permutation of blocks of 
entries, and we find (not surprisingly) that the system is more resistant to the latter, 
due to the fact that the distance we are using is ‘not local’ and only cares about the 
structure, which is partially preserved by non-random errors. 

In 9 5 we briefly discuss the viability of such a system as a model of a real biological 
one, and we argue that the kind of connections used for the preprocessing could in 
principle be found in a nervous system. 

Finally, we conclude by recapitulating the results and speculating about the possible 
construction of a network, based on principles similar to the ones used to process the 
symmetries. 

2. The invariant distance 

In what follows we are going $0 recall some general features about neural networks 
[2] that will be used later. The network is a set of N ‘neurons’ that can be regarded 
as Ising spins, so they can only be in two states, which we have chosen to be 1 and 0 
corresponding to the firing or not-firing state in biological terms. Let us define the 
configuration space of the network r N  as the set of all possible states of the system 
with N neurons 

r N  = { s I s E H , N }  (2.1) 

where Z2 is the Abelian group of integers mod 2. 
The next step is to define a dynamics in r N  in such a way that there are certain 

stable states 6“ called memories. From now on we are going to assume for simplicity 
that these memory vectors are uncorrelated, and with entries that are statistically 
independent from each other (taking values 0 or 1 with probability f). Nevertheless, 
the methods developed here are not a priori restricted to that case. 

The usual procedure is to define an energy functional that is a monotonically 
decreasing function of a ‘time’ defined through a Monte Carlo dynamics. Storing 
memory states is accomplished by constructing an energy functional with those states 
as minima, so if the input is ‘near enough’ to one of the memories, the time evolution 
will drive it to the corresponding minimum. Therefore such an input will be recognised 
as the stored memory even if it is not exactly identical to it. 

We should ask what is meant by ‘near enough’. Perhaps the best answer to this 
question is to reverse the argument above and say that two states are ‘near enough’ 
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if, under the influence of the chosen dynamics, they will eventually arrive at the same 
minimum. Of course, this will require exact knowledge of the time evolution of the 
system and for the moment it is far from our analytical and computational abilities to 
provide such an answer. 

Nevertheless, it is known that the Hamming distance 
N 

Ham( &", 6') = 2 (6: + 6f)  mod 2 
1 = 1  

is a good measure of the distance in the known examples. 
Now suppose (as is often the case) that we would like to recognise not just single 

patterns but whole equivalence classes under a certain symmetry group G. In general, 
the Hamming distance between any two elements of any given equivalence class will 
be very large. It is unlikely that if we store a certain pattern the network will recognise 
one that is symmetry related to it. 

To keep things as simple as possible at the beginning, we will first fix our attention 
on the group of cyclic permutations Cp (or equivalently shifts with periodic boundary 
conditions). We think that this symmetry group is specially interesting, because it 
preserves the global 'one-dimensional structure' of the state. We will describe how to 
generalise our construction to other symmetry groups at the end of this section. 

Cp is generated by just one element that can be taken to be the translation by a 
single step to the right, so g N  = 1 if we assume periodic boundary conditions. All the 
elements of the group are of the form g' where r E E N - I ,  

If we compute the Hamming distance between a memory and its symmetry-related 
pattern, we obtain on average 

(Ham(&", g ' .  6 " ) )  = N / 2  V r f O  (2.3) 

which implies that g' 6" is uncorrelated to the associated memory. 
If we want the network to recognise this pattern, there are two possible ways to 

proceed: store all patterns that are related by a symmetry transformation, or preprocess 
the input in such a way that the Hamming distance between the symmetry related 
patterns will be zero or at least much smaller than N / 2 .  

The first option would require multiplying the number of memories by the order 
of the symmetry group, which is N in the case of Cp. This is not possible in the 
known examples; for instance in the Hopfield model the maximum number of stored 
patterns is of the order aN,  where a -0.14. In any case this brute force procedure is 
not very appealing, so we will concentrate on the second possibility. 

Our approach is the following: we construct a map y from the configuration space 
r N  into a new configuration space f where the dynamics will take place, with the 
following constraints. 

( i )  In the new configuration space f we should be able to implement the same 
kind of neural networks based on a Monte Carlo spin dynamics. 

(ii) This map is going to induce a distancet in  rh! with the following properties: 

y* Ham(s", s') = Ham( y sa ,  y s p )  

y* Ham(s", G. s p )  = y* Ham(su, s') ba, E rpu 

t Here we are using the concept of distance in a loose sense. Strictly speaking we will only require it to be 
a symmetric map from rh x F'& into the non-negative integers. 
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where by G * s we mean the action of any element of the symmetry group, for example 
the action of g‘ for cyclic permutations. These relations clearly imply 

y o G =  Y (2.6) 

so y should be an invariant map under the action of G. 

will elaborate on this point in P 5 .  

the conditions stated above, we have proceeded as follows. 

(iii) Finally, we require the map y to be easily implementable in hardware. We 

In order to produce the invariant functions for the cyclic permutation group obeying 

First we generate the set of vectors 

R = (s, + s , + B )  mod 2 0 = 1 ,  . . . ,  N / 2  (2.7) 

so that for any  SE^, we have N / 2  vectors labelled by 0 ( ( N + 1 ) / 2  if N is odd). 
The reason 6 takes values no bigger than N / 2  is that the set consisting of all Slfi”+’ 
for a fixed 0 contains the same elements as the one obtained by taking all the elements 
of the form R:; this is due to the fact that we are taking periodic boundary conditions, 
so the sum i + 0 in (2.7) has to be understood modulo N. 

Define w as follows: 
N 

w e =  Re. (2.8) 
i = l  

Now we can regard w as a vector with components labelled by 0 and entries which 
take values in the positive integers. What is the information that this vector w contains? 
Clearly w only keeps track of the relative distribution of zeros and ones in the original 
vector s. This is the precise meaning of the ‘one-dimensional structure’ we referred to 
before. This information is invariant under cyclic permutations. So we have mapped 
a vector s to another vector w in a way that is ‘blind’ to the action of C, .  

It is obvious that this map is also invariant under the following symmetry transforma- 
tions in r N  : ( 1 )  the dual transformation, which consists of interchanging all the zeros 
and ones; (2) inversions, by which we mean the map s, + s ( ~ + ~ ) - , .  These invariances 
can be easily broken, but they preserve the ‘one-dimensional structure’ of the vectors 
as the cyclic permutations do, so we will keep them as a ‘bonus’. 

We can regard equations (2.7) and (2.8) as defining a map 7~ from the equivalence 
classes of r N  under the symmetry group into a space 9 = { U }  

rrrN/G+’4f  

[ s l o w .  (2.9) 
Obviously r does not obey the first of our requirements, because it will not be 

possible to implement a spin Monte Carlo dynamics in 9. Hence, the next step is to 
define the map 

77 : *+ r N , 2  (2.10) 
where 

q ( w e )  = @ ( w e  - N / 2 )  = (2.11) 
and 0 is the usual truth function. O(x) = 1 if x > 0 and zero otherwise. 

Now we define y = q 0 r 

Y :  r N  + r N / 2 .  (2.12) 
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This map y obeys all the requirements because it can be implemented in hardware 
with very simple connections, as we will see in 5 5. In this case we can identify the 
space ? with r N I Z .  

A further test is needed if the network is to recognise only uncorrelated patterns. 
We have to check that the images of uncorrelated memory vectors are also uncorre- 
lated?. This implies that 

( y* Ham( t", 6')) = N / 4 .  (2.13) 

We have been unable to find an analytical proof for (2.13). Nevertheless we have 
checked with several computer runs the validity of this statement. 

Since we have reduced the dimension of the configuration space from 2 N  to 2"', 
the maximum number of stored patterns is also reduced; for example in the Hopfield 
method that number is proportional to N, so it decreases by a factor of 2. But, 
associated with each stored pattern there are 4 N  symmetry-related ones which will be 
recognised as a memory, so the final result is an increase by a factor of 2N. 

One of the main drawbacks of the map y is that it maps all the vectors with less 
than N / 4  ones (or equivalently less than N / 4  zeros, because of the invariance under 
the duality map) into the zero vector in r N / Z .  In any case, if the entries of the memory 
vectors are random bits, the probability that more than one of the memories belongs 
to that subspace is extremely low. 

Another possible criticism of this preprocessing method is that many different 
vectors are mapped to the same one (by different in this context we mean vectors not 
related by a symmetry transformation), due to the fact that the dimension of the image 
of rN is much smaller than the dimension of r N  itself. We do not consider this a 
drawback because if two different vectors are mapped to the same one in r N / 2 ,  it 
means that statistically their Euclidean distance is smaller than the average distance 
between any two vectors in q, so in some sense they are closer because they have 
similar structure (remember that the vectors w were a measure of the structure of the 
vector they come from). In fact, we will speculate later that this can be a very interesting 
property, because 'similar' vectors can be recognised as the same one, without the 
need of any dynamics in the system. 

The generalisation to different symmetry groups (that are subgroups of the whole 
permutation group of N elements) comes from the observation that in the set Y of 
cardinality N( N - 1)/2, defined as 

Y = {ne} (2.14) 

the action of the symmetry group defines a partition. We will denote the j th  orbit by 
0' and define the vectors w as 

w J =  ff. 
a e O '  

(2.15) 

So the prescription goes through by substituting for N / 2  in the argument of the 0 
function one half the number of the elements in the orbit. It is easy to check that this 
reduces to the results obtained before for the particular case of the group of cyclic 

+ Notice that this is not true if we restrict ourselves to the map n. The w e  are not statistically independent; 
a simple way to see this is to consider the case where U '  is equal to N ;  in this particular case we can 
reconstruct completely the vector in r, it comes from ( i t  has for components Os and 1s alternatively), so 
it determines univocally the values of the other w .  
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permutations. In equation (2.8) the sum over i can be interpreted as the sum over all 
the elements of the orbit 

gr.n;=np+,. (2.16) 

Notice that for an arbitrary symmetry group, 0 will stop being a good label for the 
whole orbit, in general elements with different theta will belong to the same orbit. In 
general for symmetry groups of order much higher than N, we will have to introduce 
in Y elements that will measure more than the ‘two-point correlation’, those of the form 

(2.17) 

where the sums have to be understFod as modulo two. 
If not, the configuration space r would be, in general, ‘reduced to ashes’. 
One of the peculiarities of this preprocessing mechanism is that the states that are 

retrieved are not the memories themselves but their y-images. Of course that would 
be no problem for a computer system, because the information should not necessarily 
be encoded in the very same way as the input that recalls it. But a far more interesting 
question arises if we ask ourselves if the human brain can work in such a fashion. It 
is not still known how information is stored in our brains, but there are some clues 
that information about form .and spatial orientation are connected with great difficulty 
in early childhood [4]. This can suggest that certain invariant properties of the objects 
are stored independently of the symmetry transformations that can be performed on 
them. For a specially interesting experiment along these lines we refer to Gibson [ 5 ] .  
This experiment shows that children from four to eight years old have no difficulty in 
distinguishing patterns with different shapes, but they show great difficulty in distin- 
guishing patterns related by some particular kinds of symmetry transformations. 

3. Random walk approximation for propagation of random errors 

As already discussed, we would like to use a suitable Monte Carlo dynamics in the 
space f .  The fixed points of this dynamics will be the image via y of the patterns that 
we want the network to recogFise. So it is a question of major relevance to find how 
errors propagate from r N  to r via the map y. 

We will concentrate on the case of shifts or cyclic permutation invariance (the 
generalisation to other symmetries is obvious). We will assume that the errors are 
produced at random and uncorrelated, and the memories are also random (though it 
should be kept in mind that the methods developed in the last section are not restricted 
to this situation). The more interesting case of errors produced by permutation of 
blocks of entries will be studied numerically in the following section. 

In order to see how these random errors propagate, we are going to assume that 
the entries of a vector in r N / Z  are statistically independent, so we will first compute 
the probability Pa for each of the entries to change from 1 to 0 or vice versa when we 
modify a fraction 6 of the entries in the memory, and later to predict the total number 
of changes we will use a random walk with probability Pa of taking a step to the right 
and probability 1 - Pa of not moving at all (corresponding respectively to modifying 
or not one of the entries), so the average number of changes as well as its standard 
deviation will be easily computed. We have checked the agreement of the theoretical 
computation with the ‘experimental’ results obtained from several runs on the computer 
(figure 1). 
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6 

Figure 1. The fraction of modified entries in r N I 2  ( P , )  is plotted against the fraction of 
modified entries in r k  (8). The full curve represents the theoretical prediction and the 
experimental points are represented by the squares. The error is approximately k0.05. 

The probability that an entry of s '̂ changes from one to zero is by its definition 
the probability for U' - N / 2  to change from positive to negative. For random 
memories, we will regard the map 7~ as a random walk, where the probability for R f  
to be zero or one is $. This would be exact if all the 51 for a fixed 8 were statistically 
independent, but this is not the case when 8 and N are not relatively primet. This 
can be clearly seen in an example with N = 9 and 8 = 3 ,  if we know s, + s4 and s4+ s,, 
that are respectively R: and R:, R: will just be (R:+fl:) mod 2 .  These correlations 
will be obviously not important when N I 8  goes to infinity, but this will not a priori 
be true when N /  8 remains finite in the limit N going to infinity. Nevertheless we will 
argue that this is indeed the case. In order to see that, we will fix our attention on the 
simple case where 8 = N / 3  (here we are assuming N to be divisible by 3 ) ,  in this case 
we will have a random walk with N / 3  steps, but now we will have probability of 
moving two 'steps' to the right and probability a of not moving at all; it is a simple 
exercise to show that in the limit N goes to infinity the probability distribution is a 
Gaussian with the same parameters that we would have obtain with N steps, with a 
probability o f f  of giving a step to the right and f of not moving at all. These results 
can be generalised, but perhaps the best and simplest justification for neglecting these 
correlations will be the results themselves. 

In order to compute Pa we proceed as follows. 
( i )  First, we compute the distribution of possible values for w e  - N / 2  when it is 

the image via y of one of the random memories (assuming statistical independence 
as explained above). 

(ii) Next, we determine the average number of R of a specific level that are altered 
when we randomly change SN entries in the memory vector. We will refer to this 
number as PN. 

t This means they have a common factor. 
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(iii) Finally, we compute the probability that in the random walk defined by (1 ,9 ) ,  
w e  - N / 2  will go from a positive to a negative number when we randomly change 
p /  N 'steps'. Pa will be twice this number. 

N = n ,  + n,  

Let's define w 8  = fm + N / 2  where 

m = n ,  - n,  

n ,  = number of 'steps to the right' 

n, =number of 'steps to the left' 

steps to the right and left correspond to Cle  taking values one and zero respectively. 
P , ( m )  is the usual binomial distribution associated with a random walk with a 

probability of moving either right or left. 

N !  
p N ( m ) = [ f ( N  + m ) ] ! [ i ( N  - m ) ] !  

If we change just one component of a memory vector 5, it is obvious because of 
(2.8) that the C l e  and fii"_, associated to it will also be modified, so we would naively 
expect that varying SN components in 5 we would change 2SN of the Cle  for a fixed 
8. This is not the case in general, because if we change two entries that are 8 components 
apart we can see that only two, and not four of the Cl are altered. If we modify SN 
entries in 8 we will change 6 N ( N - S N ) + O ( N )  elements in the set Y defined in 
( 2 . 1 5 ) ,  so the average number of altered fi for fixed 8 when N goes to infinity is given 
by 2 N ( S  - S' ) ,  therefore p is 

p = 2( 6 - 6 2 ) .  (3.2) 

We need to know how many 'steps' will be to the right and to the left if we pick 
P N  af them randomly. Defining P N  = r l  + r , ,  where r ,  and r2 are the number of steps 
to the right and to the left respectively. The probability of taking rl and r, in a given 
order ist  

n ,  n , - 1  n , - r , + l  n2 n 2 - 1  n ,  - r2+ 1 
N N - 1 " '  N - r , + l  N - r ,  N - r , - l * * ' N - r , - r , + l  
-- 

- n , !  n,!  ( N - r , - r , ) !  - 
( n ,  - r , ) !  ( n ,  - r,)! N !  (3.3) 

This is clearly independent of the order so we have to multiply by the degeneracy 

(E" 
r , ! r 2 !  ' 

Using the following constraints to eliminate r, , r , ,  n ,  and n,  

m = n , - n ,  n ,  = f ( N +  m )  
-1 

-1 

-1 

N = n ,  + n,  2 - , ( N  - m )  

1 - 2 ( P N + s )  

2 - 2(PN - s). 

s = r ,  - r2 

PN = r,  + r2 

(3.4) 

t This is the probability of picking up r ,  white balls and rz  black balls in a given order from a bag with N 
balls, n, white and n2 black. 
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where we have also used equation (3.1). 
that for any m > 0 we have changed enough steps (a) so that 

the 'new random walk' finishes at the left of the origin (or s > $ m ) ,  or equivalently, 
the probability that U @  changes from one to zero if we vary 6N components of the 
memory vector it comes from, is given by 

The probability 

Substituting the expressions for P N ( m )  and PpN,  and making the Gaussian approxima- 
tion in the 'thermodynamic limit' (N+co) ,  the right-hand side of equation (3.6) can 
be written as 

After some algebra we obtain 

P -- 
1-2p 

(3 .7)  

Now we have all the ingredients that we need to compute the distribution of 
Hamming distances in rhZl2, between a memory vector and itself with SN randomly 
changed entries. 

Denoting the distance by d, we obtain 

1 ( d - p I 2  P ( d )  =- e x p - p  
2 w 2  

where 

(3.9) 

(3.10) 

Notice that if we are interested only in how errors propagate in percentage, in the 
thermodynamic limit the finite width of the Gaussian is irrelevant. 

The fraction of modified entries in r N / 2  is given by Ps, which in figure 1 is plotted 
as a function of 6. There it can be compared with the experimental results obtained 
for a system of 400 'neurons'. 

In figure 2 we plot the experimental distribution of distances for N=400 and  
6 = 0.05, and  we compare it with the best Gaussian fit; the only free parameter 
agrees with the one obtained by equation (3.10) up  to the fourth decimal place. 

If the dynamics chosen for rN,2 were the Hopfield model, we know that we could 
recognise inputs with up  to -30% of their entries differing from a memory without 
appreciable error. This would imply, as can be directly read from the plot, that with 
the preprocessing we would be able to almost certainly recognise vectors differing by 
12%. For a complete study of the convergence properties of the Hopfield model we 
refer the interested reader to [6]. 
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Figure 2. The experimental distribution of distances for N = 400 and 6 = 0.05 is compared 
with the best Gaussian fit; the only free parameter Ps agrees with the one obtained by 
equation (3.10) up to the fourth decimal place. The height of the Gaussian has been 
normalised to one, and each bar represents a unit distance. 

4. Propagation of correlated errors 

We have already discussed the fact that the induced distance in r N  measures the 
‘one-dimensional structure’. So it is interesting to ask how our system will behave 
when the error in the input preserves the structure of the state to some extent, for 
example the permutation of block of entries. 

If we consider the vector as a ‘sentence’, a permutation of a block of entries will 
correspond to altering the order of the ‘words’ in it. In order to give a concrete example, 
consider the vector below thought of as a sentence with twenty words 

s21,. . . . . . f f . , s380, s381,. e . ,  s m ) .  - (v- C B 
& L  

If we interchange the order of the blocks B and C, we obtain the vector 

i S 1  9 .  . . 9 s 2 9  s381 9 s400, t Z 1 ,  * - * * .  * . . 3 s3802* 

A - e -  B 
In average the number of different entries between these two vectors (the average 

Hamming distance) would be 47.5%, and it would be impossible for the network to 
identify both of them. 

However, if we use the distance induced by y, we expect it to be much smaller, 
due to the fact that by a cyclic permutation ABC can go to CAB, and we have only 
to permute C and A which, on average, induces a change of only 5%.  

Moreover, in a permutation many of the correlations between two entries are 
preserved, so we expect our distance to behave much better under such a change. 

We have studied numerically how error propagates when we interchange two 
consecutive blocks of entries. The results are given in figure 3 where the fraction of 
modified entries in r N / Z  is plotted against the size of the permuted blocks for a system 
of 400 ‘neurons’. 
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qo r )- = 

3, 4 
-I 0.1 - 
7 

ll I I I I 1  I I 1  I l l l l l l l , ,  

0 50 100 150 200 
Block size  

Figure 3. The fraction of modified entries in r*,*, when we permute two neighbouring 
blocks of entries, is plotted against the size of the blocks for a system of 400 'neurons'. 
The error is approximately ~ 0 . 0 5 .  

Taking into account that a permutation of two blocks of size N corresponds (on 
average) to changing N entries of the vector, we can compare these results with those 
of the previous section (figure 1) and  observe a significant improvement in the behaviour 
of the induced distance. 

Of course, there are many different ways in which non-random errors can be 
introduced and  there is no reason to restrict oneself to permutations of neighbouring 
blocks. We hope the results presented here are interesting enough to motivate further 
study. 

5. Hardware implementation and biological systems 

The only kinds of operations used in the preprocessing algorithm introduced in the 
previous sections are: addition modulo two and  a threshold represented by the function 
0. All these operations are easily implementable in hardware, so our last condition 
for our map  y is fulfilled. A much more interesting question arises if we ask ourselves 
whether in principle the type of connections we have introduced to perform the logical 
operation XOR (which corresponds to the addition m o d 2  used to construct the 
invariant functions) can be found in a biological system such as the human brain. 

The answer is affirmative and, in order to explain why, we will fix our attention 
on a simplified model that retains all the properties we want to check. This is a single 
neuron whose dendrites are connected to two other neurons (figure 4). 

The two operations 

o + o = o  
0 + 1 = 1  
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Axons 

Neuron 1 A Neuron 2 

Dendrites 

N e u m  

Figure 4. Neural circuit needed to perform the addition modulo two. 

are implemented by adding the currents that flow in both dendrites. But in order to get 

l + l = O  

we need a little more structure which is provided by the axons of neurons 1 and 2. 
We can connect the axon of neuron 1 to the dendrite of neuron 2 and vice versa with 
the interaction being of the inhibitory type, so that if both neurons are active these 
connections will kill the current flowing through the dendrites. Thus the current arriving 
to the neuron downstairs will be zero. 

It is straightforward to check that such connections d o  not alter the outcome for 
the other possible cases. 

These types of connections have already been considered for neural modelling in 
the biology literature. For a review see [7]. 

6. Conclusions and speculations 

As we have seen, the introduction of different classes of distances can be easily obtained 
by a preprocessing mechanism. We have given a workable prescription for introducing 
distances which are invariant under arbitrary symmetry transformations acting in the 
neural network configuration space. 

We have worked out explicitly the construction for Cp, and the results can be 
recapitulated as follows. 

(i) The network would recognise all the ele'ments belonging to the equivalence 
class of a given memory, increasing the number of stored patterns by a factor of 2N. 

(ii) Although the basin of attraction is shrunk, it would still be possible to recognise 
patterns with an  appreciable amount of noise. 

( i i i )  The induced distance behaves much better under the permutation of a block 
of entries (that can be interpreted as highly correlated errors), 

We would not like to finish without saying something about what we believe to be 
one of the most interesting features of the map y. As we have already seen, vectors 
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that are close with respect to the Euclidean distance in V can be mapped to the same 
state in rN,* .  We think it is an  interesting question to ask how far this property can 
be pushed in order to obtain a network in which the recognition process could be 
carried by a map from the total configuration space r N  to a reduced one, where only 
the memories are represented. In that case the basin of attraction for a memory 6 
would be given by y - ' ( & ) ,  and no time evolution would be required at all. 
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